![]() | ConflictInfo: It stores information about the conflict between two rows in a data set |
![]() | ConflictInfo() |
![]() | bool operator <(const ConflictInfo& init)const |
![]() | ~ ConflictInfo() |
![]() | ConvLayer |
![]() | ConvLayer& operator =(const ConvLayer& init) |
![]() | ConvLayer() |
![]() | ConvLayer(const ConvLayer& init) |
![]() | bool AllocateMemoryForTraining(size_t numThreads, bool includeGradient, bool includeStochastic) |
![]() | bool Create(int layerType, size_t depth, int activationFuncType, size_t visualField, size_t pad, size_t stride) activationFunctionType: NN_AFTYPE_LINEAR, NN_AFTYPE_LOGSIG, NN_AFTYPE_TANH, NN_AFTYPE_RELU, NN_AFTYPE_SOFTMAX, NN_AFTYPE_MAX, NN_AFTYPE_AVG layerType: NN_LAYTYPE_CONV, NN_LAYTYPE_FULLCN, NN_LAYTYPE_LOCALCN, NN_LAYTYPE_POOL if layerTyp =NN_LAYTYPE_CONV, then depth is the number of filters |
![]() | bool Load(Sys::File& file, size_t numThreads) |
![]() | bool Save(Sys::File& file)const |
![]() | bool SetActivationFuncType(int activationFuncType) activationFunctionType: NN_AFTYPE_LINEAR, NN_AFTYPE_LOGSIG, NN_AFTYPE_TANH, NN_AFTYPE_RELU, NN_AFTYPE_SOFTMAX, NN_POOL_MAX, NN_POOL_AVG |
![]() | bool SetInputSize(size_t width, size_t height, size_t depth, size_t numThreads) |
![]() | double OutputDerivative(double activation) |
![]() | int GetActivationFuncType() It returns: NN_AFTYPE_LINEAR, NN_AFTYPE_LOGSIG, NN_AFTYPE_TANH, NN_AFTYPE_RELU, NN_AFTYPE_SOFTMAX, NN_POOL_MAX, NN_POOL_AVG |
![]() | int GetLayerType() const It returns: NN_LAYTYPE_CONV, NN_LAYTYPE_FULLCN, NN_LAYTYPE_LOCALCN, NN_LAYTYPE_POOL |
![]() | int GetStdRange() const It returns: NN_STD_RANGE_NONE, NN_STD_RANGE_MINUS1_1, NN_STD_RANGE_0_1 NN_STD_RANGE_MINUS09_09, NN_STD_RANGE_01_09 |
![]() | size_t GetDepth() const |
![]() | size_t GetHeight() const |
![]() | size_t GetNumNeurons() const |
![]() | size_t GetNumOutputs() const |
![]() | size_t GetNumWeights() const |
![]() | size_t GetWidth() const |
![]() | void AcumulateGradient(double factor) |
![]() | void Agitate(double perturbRatio, Nn::ConvLayer& source) |
![]() | void ComputeDelta(const Nn::ConvLayer& nextLayer, size_t threadIndex) |
![]() | void ComputeGradient(const Sys::Tensor& prevActivation, size_t threadIndex) |
![]() | void ComputeOutput(const Sys::Tensor& input, size_t threadIndex) For the given input, it computes the activation of the neurons in the layer when threadIndex = 0, the result is stored in activation[0] when threadIndex = 1, the result is stored in activation[1] . . . |
![]() | void ComputeWeightPenalty() |
![]() | void CopyBestIndividual(Math::GeneticAlgorithm& ga, size_t& index) |
![]() | void CopyWeights(const Nn::ConvLayer& source) No error checking is done to improve performanced |
![]() | void Delete() |
![]() | void GeneticInitialize(Math::GeneticIndividual& individual, size_t& index) |
![]() | void GeneticSetFromBits(const Math::GeneticIndividual& individual, size_t& index) |
![]() | void GetDescription(wstring& out_description)const |
![]() | void Initialize() |
![]() | void MoveDown() |
![]() | void ReleaseMemoryForTraining() |
![]() | void ResetDelta(size_t threadIndex) |
![]() | void ResetGradient() |
![]() | void ResetPreviousGradient() |
![]() | void SetLearningRate(double learnRate) void StorePreviousGradient(); |
![]() | void UpdateLearningRate(double initialLearnRate, double maxLearnRate, double growthLearnRate) |
![]() | ~ ConvLayer() |
![]() | DeepLayer |
![]() | DeepLayer& operator =(const DeepLayer& init) |
![]() | DeepLayer() |
![]() | DeepLayer(const DeepLayer& init) |
![]() | bool AllocateMemoryForGradient(size_t numThreads) |
![]() | bool Create(size_t numNeurons, int activationFuncType, size_t numThreads) activationFunctionType: NN_AFTYPE_LINEAR, NN_AFTYPE_LOGSIG, NN_AFTYPE_TANH, NN_AFTYPE_RELU, NN_AFTYPE_SOFTMAX |
![]() | bool Load(Sys::File& file, size_t numThreads) |
![]() | bool Save(Sys::File& file)const |
![]() | bool SetActivationFuncType(int activationFuncType) activationFunctionType: NN_AFTYPE_LINEAR, NN_AFTYPE_LOGSIG, NN_AFTYPE_TANH, NN_AFTYPE_RELU, NN_AFTYPE_SOFTMAX |
![]() | bool SetNumInputs(size_t numInputs) |
![]() | double OutputDerivative(double activation) |
![]() | int GetActivationFuncType() |
![]() | int GetStdRange() const It returns: NN_STD_RANGE_NONE, NN_STD_RANGE_MINUS1_1, NN_STD_RANGE_0_1 NN_STD_RANGE_MINUS09_09, NN_STD_RANGE_01_09 |
![]() | size_t GetNumInputs() const |
![]() | size_t GetNumNeurons() const |
![]() | size_t GetNumWeights() const |
![]() | void Agitate(double perturbRatio, const Nn::DeepLayer& source) |
![]() | void ComputeOutput(const valarray<double >& input, size_t threadIndex) For the given input, it computes the activation of the neurons in the layer when threadIndex = 0, the result is stored in activation[0] when threadIndex = 1, the result is stored in activation[1] . . . |
![]() | void ComputeWeightPenalty() |
![]() | void CopyBestIndividual(Math::GeneticAlgorithm& ga, size_t& index) |
![]() | void Delete() |
![]() | void GeneticInitialize(Math::GeneticIndividual& individual, size_t& index) |
![]() | void GeneticSetFromBits(const Math::GeneticIndividual& individual, size_t& index) |
![]() | void Initialize() |
![]() | void ReleaseMemoryForGradient() |
![]() | void ResetGradient() |
![]() | ~ DeepLayer() |
![]() | KohoNet: An artificial neural network without supervision (Kohonen ANN) |
![]() | KohoNet& operator =(const KohoNet& init) |
![]() | KohoNet() |
![]() | KohoNet(const KohoNet& init) |
![]() | bool AutoSetInputScaler(MATRIX& input) |
![]() | bool Create(int numInputs, int numOutputs, int inputNormType) |
![]() | bool GetInputScaler(int index, double& minimum, double& maximum) |
![]() | bool SetInputName(int index, const wchar_t* name) |
![]() | bool SetInputScaler(int index, double minimum, double maximum) |
![]() | bool SetWeights(const MATRIX& weights) |
![]() | const wchar_t* ComputeWinner(const MATRIX& input, valarray<double >& output) |
![]() | const wchar_t* ComputeWinner(const MATRIX& input, valarray<int >& output) |
![]() | const wchar_t* GetInputName(int index)const |
![]() | const wchar_t* Load(const wchar_t* filename) |
![]() | const wchar_t* Run(const MATRIX& input, MATRIX& output) |
![]() | const wchar_t* Save(const wchar_t* filename) |
![]() | const wchar_t* ScaleInputDataSet(const MATRIX& input, MATRIX& scaledInput, bool ignoreWarnings) |
![]() | const wchar_t* SetTrainingSet(const MATRIX& trainSetIn, bool ignoreWarnings) |
![]() | const wchar_t* TrainAdditive(Mt::ThreadLink& threadLink, Mt::DoubleTs& error, double learningRate, int numIterations) |
![]() | const wchar_t* TrainSubtractive(Mt::ThreadLink& threadLink, Mt::DoubleTs& error, double learningRate, int numIterations) |
![]() | int ComputeWinner(int trainCaseIndex) |
![]() | int GetInputCount() const |
![]() | int GetOutputCount() const |
![]() | void Copy(const KohoNet& init) |
![]() | void Delete() |
![]() | void GetDescription(wchar_t* description, int length) |
![]() | void GetNormalizedInput(MATRIX& normInput) |
![]() | void GetWeights(MATRIX& weights) |
![]() | void Unlearn() |
![]() | ~ KohoNet() |
![]() | Layer: One layer of an artificial neural network |
![]() | Layer& operator =(const Layer& init) |
![]() | Layer(const Layer& init) |
![]() | Layer(void) |
![]() | double OutputDerivative(const size_t index)const |
![]() | void Agitate(double perturbRatio, Nn::Layer& source) |
![]() | void ComputeOutput(const MATRIX& input, size_t rowInputIndex) Computes the output for the input in the row rowInputIndex output has only one row |
![]() | void Copy(const Layer& init) |
![]() | void Delete() |
![]() | void GeneticInitialize(Math::GeneticIndividual& individual, size_t& index) |
![]() | void Initialize() |
![]() | ~ Layer(void) |
![]() | LayerNet: A multi-layer artificial neural network |
![]() | LayerNet& operator =(const LayerNet& init) |
![]() | LayerNet() |
![]() | LayerNet(const LayerNet& init) |
![]() | bool AutoSetInputScaler(MATRIX& input) |
![]() | bool AutoSetOutputScaler(MATRIX& output) |
![]() | bool Create(size_t inputCount, size_t hidden1Count, size_t hidden2Count, size_t outputCount) |
![]() | bool GetActivation(size_t layerIndex, const MATRIX& input, MATRIX& out_activation) layerIndex: 0, 1, 2, ..., numLayers-1 Number Layers 1 > layerIndex=0 (Output) Number Layers 2 > layerIndex=0 (Hidden1), layerIndex=1 (Output) Number Layers 3 > layerIndex=0 (Hidden1), layerIndex=2 (Hidden2), layerIndex=3 (Output) |
![]() | bool GetActivation(size_t layerIndex, valarray<double >& out_activation) layerIndex: 0, 1, 2, ..., numLayers-1 Number Layers 1 > layerIndex=0 (Output) Number Layers 2 > layerIndex=0 (Hidden1), layerIndex=1 (Output) Number Layers 3 > layerIndex=0 (Hidden1), layerIndex=2 (Hidden2), layerIndex=3 (Output) |
![]() | bool GetInputScaler(int index, double& minimum, double& maximum) |
![]() | bool GetOutputScaler(int index, double& minimum, double& maximum) |
![]() | bool GetWeights(size_t layerIndex, MATRIX& out_weights) layerIndex: 0, 1, 2, ..., numLayers-1 Number Layers 1 > layerIndex=0 (Output) Number Layers 2 > layerIndex=0 (Hidden1), layerIndex=1 (Output) Number Layers 3 > layerIndex=0 (Hidden1), layerIndex=2 (Hidden2), layerIndex=3 (Output) |
![]() | bool Run(const MATRIX& input, MATRIX& output) |
![]() | bool SetInputName(int index, const wchar_t* name) |
![]() | bool SetInputScaler(int index, double minimum, double maximum) |
![]() | bool SetOutputName(int index, const wchar_t* name) |
![]() | bool SetOutputScaler(int index, double minimum, double maximum) |
![]() | bool SetWeights(size_t layerIndex, const MATRIX& weights) layerIndex: 0, 1, 2, ..., numLayers-1 Number Layers 1 > layerIndex=0 (Output) Number Layers 2 > layerIndex=0 (Hidden1), layerIndex=1 (Output) Number Layers 3 > layerIndex=0 (Hidden1), layerIndex=2 (Hidden2), layerIndex=3 (Output) |
![]() | const wchar_t* GetInputName(int index) |
![]() | const wchar_t* GetOutputName(int index) |
![]() | const wchar_t* GetScaledOutput(MATRIX& scaledOutput) |
![]() | const wchar_t* Load(const wchar_t* filename) |
![]() | const wchar_t* Save(const wchar_t* filename) |
![]() | const wchar_t* ScaleInputDataSet(const MATRIX& input, MATRIX& scaledInput, bool ignoreWarnings) |
![]() | const wchar_t* ScaleOutputDataSet(const MATRIX& output, MATRIX& scaledOutput, bool ignoreWarnings) |
![]() | const wchar_t* SetTrainingSet(const MATRIX& trainSetIn, const MATRIX& trainSetTarget, bool ignoreWarnings) |
![]() | const wchar_t* TrainConjugateGradient(Mt::ThreadLink& threadLink, Mt::DoubleTs& mse, int epochs, double goal) |
![]() | const wchar_t* TrainGenetic(Mt::ThreadLink& threadLink, Mt::DoubleTs& mse, Math::GeneticParam& param) |
![]() | const wchar_t* TrainLevenbergMarquardt(Mt::ThreadLink& threadLink, Mt::DoubleTs& mse, int epochs, double goal) |
![]() | const wchar_t* TrainRegression(Mt::ThreadLink& threadLink, Mt::DoubleTs& mse) |
![]() | const wchar_t* TrainSimAnneal(Mt::ThreadLink& threadLink, Mt::DoubleTs& mse, Math::SimAnnealParam& param) |
![]() | const wchar_t* TrainVariableMetric(Mt::ThreadLink& threadLink, Mt::DoubleTs& mse, int epochs, double goal) |
![]() | double ComputeError() |
![]() | double EvaluateFunc(const valarray<double >& x) |
![]() | double GeneticGetError() |
![]() | double LevenMar(MATRIX& input, int inputRow, int idep, double target, MATRIX& alpha, valarray<double >& beta, valarray<double >& hid2delta, valarray<double >& grad) |
![]() | double LevenMarComputeHessianAndGradient(valarray<double >& hid2delta, valarray<double >& grad, MATRIX& hessian, valarray<double >& beta, Mt::ThreadLink& threadLink) |
![]() | double SimAnnealGetError() |
![]() | size_t GetHidden1NeuronCount() const |
![]() | size_t GetHidden2NeuronCount() const |
![]() | size_t GetMinNumTrainCases() double ComputeTrueMse(const MATRIX& trainSet_in, const MATRIX& trainSet_target); double ComputeCurrentTrueMse(); |
![]() | size_t GetNumInputs() const |
![]() | size_t GetNumLayers() const numLayers = 1 > Output Layer numLayers = 2 > Hidden1 and Output Layer numLayers = 3 > Hidden1, Hidden2 and Output Layer |
![]() | size_t GetNumNeurons(size_t layerIndex)const |
![]() | size_t GetNumOutputs() const |
![]() | static bool IsPredictionOverfitting(int seriesLength, int numInputs, int numHid) |
![]() | static void ComputeBestPrediction(int seriesLength, const MATRIX& mse, int& out_row, int& out_col) |
![]() | void ComputeOutput(const MATRIX& input, size_t inputRowIndex, size_t numLayers) |
![]() | void Copy(const LayerNet& init) |
![]() | void Delete() |
![]() | void EvaluateFuncAndGrad(const valarray<double >& x, double& Fx, valarray<double >& gradient) void EvaluateGrad(const valarray |
![]() | void GeneticInitialize(Math::GeneticIndividual& individual) |
![]() | void GeneticSetFromBits(const Math::GeneticIndividual& individual) |
![]() | void GetDescription(wchar_t* description, int length) |
![]() | void LevenMarMove(double step, valarray<double >& direction) |
![]() | void SimAnnealCopy(const Math::ISimAnneal& source) |
![]() | void SimAnnealInitialize() |
![]() | void SimAnnealPerturb(Math::ISimAnneal& original, double temperature, double initialTemperature) |
![]() | void Unlearn() |
![]() | ~ LayerNet() |
![]() | Logsig: High performance class to compute y = 1.0/(1.0+exp(-x)) |
![]() | Logsig() |
![]() | double Derivative(double y)const |
![]() | double Func(double x)const |
![]() | static double InverseFunc(double y) |
![]() | ~ Logsig() |
![]() | ProbNet: A probabilistic artificial neural network |
![]() | ProbNet& operator =(const ProbNet& init) |
![]() | ProbNet() |
![]() | ProbNet(const ProbNet& init) |
![]() | const wchar_t* Load(const wchar_t* filename) |
![]() | const wchar_t* Run(const MATRIX& trainSetInput, const MATRIX& trainSetTarget, const MATRIX& input, MATRIX& output) |
![]() | const wchar_t* Save(const wchar_t* filename) |
![]() | const wchar_t* TrainConjugateGradient(Mt::ThreadLink& threadLink, Mt::DoubleTs& mse, const MATRIX& trainSetInput, const MATRIX& trainSetTarget, int epochs, double goal) |
![]() | const wchar_t* TrainVariableMetric(Mt::ThreadLink& threadLink, Mt::DoubleTs& mse, const MATRIX& trainSetInput, const MATRIX& trainSetTarget, int epochs, double goal) |
![]() | double EvaluateFunc(const double x) |
![]() | double EvaluateFunc(const valarray<double >& x) |
![]() | int GetInputCount() |
![]() | int GetOutputCount() |
![]() | void Copy(const ProbNet& init) |
![]() | void Delete() |
![]() | void EvaluateFuncAndDeriv(const double x, double& Fx, double& dFx) |
![]() | void EvaluateFuncAndGrad(const valarray<double >& x, double& Fx, valarray<double >& gradient) |
![]() | void GetDescription(wchar_t* description, int length) |
![]() | void GetWeights(valarray<double >& weights) |
![]() | void SetWeights(const valarray<double >& weights) |
![]() | ~ ProbNet() |
![]() | Rbm: Restricted Boltzmann Machine |
![]() | Nn::Rbm& operator =(const Nn::Rbm& init) |
![]() | Rbm() |
![]() | Rbm(const Nn::Rbm& init) |
![]() | bool Create(size_t numNeurons, int activationFuncType) activationFunctionType: NN_AFTYPE_LOGSIG, NN_AFTYPE_TANH, NN_AFTYPE_RELU |
![]() | bool Load(Sys::File& file, size_t numThreads) |
![]() | bool Save(Sys::File& file)const |
![]() | bool SetNumInputs(size_t numInputs, size_t numThreads) |
![]() | double ComputeReconstructionError(const MATRIX& input, int errorType) errorType: NN_ERROR_MSE, NN_ERROR_CROSSENTROPY |
![]() | double ComputeReconstructionError(const MATRIX& input, int errorType, size_t threadIndex, size_t numThreads) errorType: NN_ERROR_MSE, NN_ERROR_CROSSENTROPY |
![]() | double GetMaxWeight() const |
![]() | double MoveDown(const valarray<double >& inputMean, double momentum) It returns the maximum increment |
![]() | double MoveDown(const valarray<double >& inputMean, double momentum, double sparsityPenalty, double sparsityTarget) It returns the maximum increment |
![]() | double ReconstructionError(const valarray<double >& input, const valarray<double >& hidden, int errorType) |
![]() | int GetActFuncType() const It returns NN_AFTYPE_LOGSIG, NN_AFTYPE_TANH, NN_AFTYPE_RELU |
![]() | int GetStdRange() const It returns: NN_STD_RANGE_NONE, NN_STD_RANGE_MINUS1_1, NN_STD_RANGE_0_1 NN_STD_RANGE_MINUS09_09, NN_STD_RANGE_01_09 |
![]() | size_t GetNumInputs() const |
![]() | size_t GetNumNeurons() const |
![]() | void ActivateHiddenUnits(const valarray<double >& input, size_t threadIndex) For the given input, it computes the activation of the neurons in the input level when threadIndex = 0, the result is stored in hiddenActivation[0] when threadIndex = 1, the result is stored in hiddenActivation[1] . . . |
![]() | void ActivateVisibleUnits(const valarray<double >& input, size_t threadIndex) For the given input, it computes the activation of the neurons in the output level when threadIndex = 0, the result is stored in visibleActivation[0] when threadIndex = 1, the result is stored in visibleActivation[1] . . . |
![]() | void CopyData(const Nn::Rbm& source) |
![]() | void Delete() |
![]() | void Initialize(const valarray<double >& inputMean, size_t threadIndex) |
![]() | void PrepareInput(MATRIX& input) |
![]() | void ResetConstrativeDivergence(double initialLearnRate) |
![]() | void ResetGradient() |
![]() | void Sampling(const valarray<double >& in, valarray<double >& out, size_t threadIndex) |
![]() | void Sampling(valarray<double >& inout, size_t threadIndex) |
![]() | void UpdateLearning(bool isFirstEpoch, double initialLearnRate, double maxLearnRate, double growthLearnRate) |
![]() | void UpdateOnRate(size_t threadIndex) |
![]() | ~ Rbm() |
![]() | RbmProgress |
![]() | RbmProgress() |
![]() | ~ RbmProgress() |
![]() | Scaler: It stores an array of "ScalingInfo" elements to scale the input or output of an artificial neural network |
![]() | Scaler& operator =(const Nn::Scaler& init) |
![]() | Scaler() |
![]() | Scaler(const Nn::Scaler& init) |
![]() | bool AutoSet(const MATRIX& matrix) |
![]() | bool Create(size_t count) |
![]() | bool Get(size_t index, Nn::ScalingInfo& out_si)const |
![]() | bool Get(size_t index, double& out_minimum, double& out_maximum)const |
![]() | bool Load(Sys::File& file) |
![]() | bool Save(Sys::File& file)const |
![]() | bool ScaleFromStdRange(int stdRange, const valarray<double >& input, valarray<double >& output)const stdRange: NN_STD_RANGE_NONE NN_STD_RANGE_MINUS1_1 from -1 to 1 NN_STD_RANGE_0_1 from 0 to 1 NN_STD_RANGE_MINUS09_09 from -0.9 to 0.9 NN_STD_RANGE_01_09 from 0.1 to 0.9 |
![]() | bool ScaleToStdRange(int stdRange, const valarray<double >& input, valarray<double >& output)const stdRange: NN_STD_RANGE_NONE NN_STD_RANGE_MINUS1_1 from -1 to 1 NN_STD_RANGE_0_1 from 0 to 1 NN_STD_RANGE_MINUS09_09 from -0.9 to 0.9 NN_STD_RANGE_01_09 from 0.1 to 0.9 |
![]() | bool Set(size_t index, const Nn::ScalingInfo& si) |
![]() | bool Set(size_t index, double minimum, double maximum) |
![]() | bool SetName(size_t index, const wchar_t* name) |
![]() | bool operator !=(const Nn::Scaler& init)const |
![]() | bool operator ==(const Nn::Scaler& init)const |
![]() | const wchar_t* GetName(size_t index)const |
![]() | const wchar_t* ScaleFromStdRange(int stdRange, const MATRIX& input, MATRIX& output)const stdRange: NN_STD_RANGE_NONE NN_STD_RANGE_MINUS1_1 from -1 to 1 NN_STD_RANGE_0_1 from 0 to 1 NN_STD_RANGE_MINUS09_09 from -0.9 to 0.9 NN_STD_RANGE_01_09 from 0.1 to 0.9 |
![]() | const wchar_t* ScaleTo11(const valarray<double >& input, valarray<double >& output) This is for Kohonen networks It scales to the range [-1.0 1.0] The output has an extra column for the synthetic input (initially set to zero) |
![]() | const wchar_t* ScaleToStdRange(int stdRange, const MATRIX& input, MATRIX& output)const stdRange: NN_STD_RANGE_NONE NN_STD_RANGE_MINUS1_1 from -1 to 1 NN_STD_RANGE_0_1 from 0 to 1 NN_STD_RANGE_MINUS09_09 from -0.9 to 0.9 NN_STD_RANGE_01_09 from 0.1 to 0.9 |
![]() | const wchar_t* Scaler::ScaleTo11(const MATRIX& input, MATRIX& output) This is for Kohonen networks It scales to the range [-1 1] The ouput matrix has an extra column for the synthetic input (initially set to zero) |
![]() | size_t GetCount() const |
![]() | static double GetMaximumStdValue(int stdRange) stdRange: NN_STD_RANGE_MINUS1_1 returns 1.0 stdRange: NN_STD_RANGE_0_1 returns 1.0 stdRange: NN_STD_RANGE_MINUS09_09 returns 0.9 stdRange: NN_STD_RANGE_01_09 returns 0.9 |
![]() | static double GetMinimumStdValue(int stdRange) stdRange: NN_STD_RANGE_MINUS1_1 returns -1.0 stdRange: NN_STD_RANGE_0_1 returns 0.0 stdRange: NN_STD_RANGE_MINUS09_09 returns -0.9 stdRange: NN_STD_RANGE_01_09 returns 0.1 |
![]() | void Copy(const Nn::Scaler& init) |
![]() | void Delete() |
![]() | ~ Scaler() |
![]() | ScalingInfo |
![]() | ScalingInfo() |
![]() | bool Load(Sys::File& file) |
![]() | bool Save(Sys::File& file)const |
![]() | ~ ScalingInfo() |
![]() | Tanh: High performance class to compute y = tanh(1.5*x) |
![]() | Tanh() |
![]() | double Derivative(double y)const |
![]() | double Func(double x)const |
![]() | static double InverseFunc(double y) |
![]() | static double InverseSoftFunc(double y) |
![]() | ~ Tanh() |